博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
review backpropagation
阅读量:6216 次
发布时间:2019-06-21

本文共 2320 字,大约阅读时间需要 7 分钟。

  The goal of backpropagation is to compute the partial derivatives C/w and C/b of the cost function C with respect to any weight ww or bias b in the network. 

 we use the quadratic cost function

   

 

two assumptions :

  1: The first assumption we need is that the cost function can be written as an average 

        (case for the quadratic cost function)

    The reason we need this assumption is because what backpropagation actually lets us do is compute the partial derivatives

  ∂Cx/w and Cx/b for a single training example. We then recover C/w and C/b by averaging over training examples. In

  fact, with this assumption in mind, we'll suppose the training example x has been fixed, and drop the x subscript, writing the

  cost Cx as C. We'll eventually put the x back in, but for now it's a notational nuisance that is better left implicit.

 

  2: The cost function can be written as a function of the outputs from the neural network

   

the Hadamard product

   (st)j=sjtj(s⊙t)j=sjtj

  

The four fundamental equations behind backpropagation

   

 

 

 

BP1 

   :the error in the jth neuron in the lth layer

     

    You might wonder why the demon is changing the weighted input zlj. Surely it'd be more natural to imagine the demon changing

   the output activation alj, with the result that we'd be using C/alj as our measure of error. In fact, if you do this things work out quite

  similarly to the discussion below. But it turns out to make the presentation of backpropagation a little more algebraically complicated.

   So we'll stick with δlj=C/zlj as our measure of error.

   An equation for the error in the output layer, δL: The components of δL are given by

  

  it's easy to rewrite the equation in a matrix-based form, as

  

  

  

BP2

  

  

  

 

BP3

  

  

BP4

  

  

  

 

The backpropagation algorithm

  

 

    

 

      Of course, to implement stochastic gradient descent in practice you also need an outer loop generating mini-batches

    of training examples, and an outer loop stepping through multiple epochs of training. I've omitted those for simplicity.

 

 reference: http://neuralnetworksanddeeplearning.com/chap2.html

------------------------------------------------------------------------------------------------

 

reference: Machine Learning by Andrew Ng

转载于:https://www.cnblogs.com/cbattle/p/9385919.html

你可能感兴趣的文章
Android-布局管理-表格布局
查看>>
exe4j生成exe后执行报错
查看>>
Python复习
查看>>
Spring Cloud(服务的消费者 ribbon+restTemplate)
查看>>
[python] colorama 模块 - 改变控制台输出文本的颜色
查看>>
文件句柄耗光造成系统重启BUG排查
查看>>
python 100例(8)
查看>>
0404 第十次课:shell基础(下)
查看>>
在耗时较长的Controller中使用Future异步
查看>>
如何将SAP Multi Target应用部署到SAP云平台的Cloud Foundry环境去
查看>>
使用Java+SAP云平台+SAP Cloud Connector调用ABAP On-Premise系统里的函数
查看>>
安全考量——Solidity中文文档(5)
查看>>
如何在UBUNTU虚拟机上编译EOS完成环境搭建?(附代码)
查看>>
以太坊开发教程汇编
查看>>
linux和windows互传文件 用户配置文件和密码配置文件 用户组管理 用户管理
查看>>
安装Mysql服务器,一主一从(主的写,从的读)
查看>>
本地与Github的交互操作
查看>>
LAMP架构
查看>>
usermod-passwd-mkpasswd
查看>>
分布式架构2--CentOs下安装Tomcat7(环境准备)
查看>>